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Abstract

This document presents the theoretical basis of local polynomial fitting, its imple-
mentation, and some preliminary applications to producing Level 3 gridded files from the
Aquarius sampling pattern.

1 Introduction

Smoothing scattered data is one of the main problems in statistics, and as such, a wide variety
of methods exist. In oceanography, partly for historical reasons, optimal interpolation—also
known as objective mapping or Gauss-Markov—tends to be the method of choice. After re-
viewing this and variety of other methods, we concluded that “local polynomial fitting” would
be most appropriate for Aquarius. This is because the smoothing radius is explicitly controlled,
and yet the degree of smoothness can be modified with a second parameter, namely the order
of the fit. The reader is referred to our earlier document for more discussion of our logic here.

As the name implies, local polynomial fitting involves a least squares fit of the data to a
polynomial. This fit is performed “locally” in vicinity of each grid point, by weighting nearby
data with a decaying function. The order of the fit (constant, linear, quadratic, etc.) impacts
the degree of smoothness of the resulting surface. The linear fit takes into account an estimate
of the local gradient, and the quadratic fit also takes estimated curvature into account.

This document introduces the basic idea of local polynomial fitting, presents equations for
the solution to scattered data over the (x, y) plane following Ruppert and Wand (1994) and Fan
and Gijbels (1996), derives new equations for the solution to scattered data over the sphere,
and presents some preliminary applications to output from the Aquarius simulator.

2 The basic idea

Let’s say we have a surface, or field, z(x, y) which is a function of two coordinates, which we
can call distance east x and distance north y. In our case, of course, z(x, y) is the sea surface
salinity. The surface is sampled at Q data points z̃q at x-locations x̃q and y-locations ỹq, with
q = 1, 2, . . . , Q. We arrange the data and the sample coordinates into vectors of length Q such
as z̃ = [z̃1 z̃2 . . . z̃Q]T where “T” indicates the matrix transpose, and similarly for x̃ and ỹ.
Based on this irregularly sampled data, we desire to obtain estimates of z(x, y) on a regular
grid. Here we use the notation “ z̃ ” to indicate a (potentially noisy) observation of z, and the
notation “ ẑ ” to indicate a gridded estimate of z based on those observations.

Local polynomial fitting is based around a local Taylor series expansion. In the vicinity of a
particular point (xo, yo), one may approximate the surface z(x, y) by a Taylor series expansion,

z(x, y) = z(xo, yo) + (x− xo)
∂z

∂x
(xo, yo) + (y − yo)

∂z

∂y
(xo, yo) + ε(2) (x, y, xo, yo) (1)

where the last term ε(2) is an error term arising from higher-order variations. Here, we have re-
solved terms up to first order—the linear terms—but we could have also included the quadratic
terms, or alternatively, we could truncate the expansion with the zeroth order (constant) term.
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In local polynomial fitting, one takes available data in the vicinity of a certain point (xo, yo),
and uses this data to estimate not just the value of the surface z(xo, yo) but also the values of its
derivatives. For a zeroth-order fit, only the value of the surface is estimated; for a first-order fit,
the value of the surface and of its gradient is estimated; and for a second-order fit, six quantities
are estimated—the surface, its gradient, and three second-order derivatives. This estimation is
accomplished though a least squares fit. The zeroth-order fit corresponds to finding the best
constant value which matches the data in the vicinity of (xo, yo), the first-order fit corresponds to
finding the best plane, and the second-order fit corresponds to finding the best parabolic surface.

A weighting function is necessary in order to localize the least-squares fit to the vicinity of
the point (xo, yo). We use the decaying parabola

KB (r) =

{
1− r2

B2 r/B < 1
0 r/B ≥ 1

(2)

where r is the distance between two points. The function KB (r) decays from a maximum of
unity at r = 0, and vanishes for r ≥ B. The radius of the fit is thus controlled by the param-
eter B, which is known as the “bandwidth”. There is a theoretical justification for using the
parabolic function as opposed to, say, a Gaussian, as discussed in Fan and Gijbels (1996). The
fact that the weighting function vanishes exactly outside radius B also makes the computation
easier, as one does not have to keep track of small contributions from very large distances, as
one would with a less compact function like a Gaussian.

Let’s say we have Q data points at x-locations x̃q and y-locations ỹq observing values z̃q,
with q = 1, 2, . . . , Q, and let the distance to the grid point be denoted by

rq(x̃q, ỹq, xo, yo) ≡
√

(x̃q − xo)2 + (ỹq − yo)2. (3)

We use the notation “ z̃ ” to indicate a (potentially noisy) observation of z, and the notation
“ ẑ ” to indicate an estimate of z based on those observations. To find the solution to the local
first-order fit, one minimizes the weighted mean-square error

Q∑
q=1

∣∣∣∣∣z̃q − ẑ(xo, yo)− (x̃q − xo)
∂̂z

∂x
(xo, yo)− (ỹq − yo)

∂̂z

∂y
(xo, yo)

∣∣∣∣∣
2

K (rq) (4)

by varying the three quantities ẑ(xo, yo),
∂̂z
∂x

(xo, yo), and ∂̂z
∂y

(xo, yo). These correspond, respec-

tively, to the estimated value of the surface z(x, y), the estimated value of its x-derivative, and
the estimated valued of the y-derivative, all evaluated at the grid point (xo, yo). The solution
is known by linear least squares theory and is given later. Performing this least squared fit at
a variety of different grid points (xo, yo), we obtain the desired solution on a regular grid.

The order of the fit, and the bandwidth B, constitute two degrees of adjustability of local
polynomial fitting. It might seem that the different order fits would give the same answer for
the estimated value of the surface ẑ(xo, yo), but this is not the case. Particularly when the data
spacing is irregular, there can be a considerable improvement in the estimation of the surface
when the higher-order terms are taken into account. When the data is noisy, as is usually the
case, there is a tradeoff to increasing the order of the fit. As the fit order increases, the local
structure of the surface is better represented, but more parameters need to be estimated. Thus
a higher-order fit decreases bias, or modeling error, at the expense of variance or random error.
A variety of methods exist for finding the “best” values of the bandwidth and of the fit order
(Fan and Gijbels, 1996).
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3 Matrix equations

We can write down a compact form for the local polynomial fit over the (x, y) plane, following
Ruppert and Wand (1994) and Fan and Gijbels (1996). We denote the order of the polynomial
fit by ρ, and consider fits of order ρ = 0 (constant), ρ = 1 (linear) and ρ = 2 (quadratic).
Gather the Taylor series coefficients into a vector, β{ρ}(x, y), defined as

β{0}(x, y) ≡ [z(x, y)] (5)

β{1}(x, y) ≡

 z(x, y)
∂z
∂x

(x, y)
∂z
∂y

(x, y)

 (6)

β{2}(x, y) ≡



z(x, y)
∂z
∂x

(x, y)
∂z
∂y

(x, y)

∂2z
∂x2 (x, y)
∂2z
∂x∂y

(x, y)

∂2z
∂y2

(x, y)


(7)

for zeroth through second order fits. The length of this vector is denoted by P , with P = 1, 3,

and 6 for ρ = 0, 1, and 2, respectively. The results of the analysis will be an estimate β̂
{ρ}
B (x, y)

of this vector, dependent upon the choice of bandwidth B, and the first element of this vector
is the estimated surface ẑ(x, y). The least squares fit is performed at a variety of different (x, y)
points to obtain the estimated surface on a regular grid.

Arrange the data values and coordinates into vectors of length Q such as z̃ = [z̃1 z̃2 . . . z̃Q]T ,
where “T” indicates the matrix transpose, and similarly for x̃ and ỹ. Now define a matrix
X{ρ}(x̃− x, ỹ − y)

X{0}(x̃− x, ỹ − y) ≡


1
1
...
1


Q terms (8)

X{1}(x̃− x, ỹ − y) ≡


1 x̃1 − x ỹ1 − y
1 x̃2 − x ỹ2 − y
...

...
...

1 x̃Q − x ỹQ − y

 (9)

X{2}(x̃− x, ỹ − y) ≡


1 x̃1 − x ỹ1 − y 1

2
(x̃1 − x)2 (x̃1 − x) (ỹ1 − y) 1

2
(ỹ1 − y)2

1 x̃2 − x ỹ2 − y 1
2

(x̃2 − x)2 (x̃2 − x) (ỹ2 − y) 1
2

(ỹ2 − y)2

...
...

...
...

...
...

1 x̃Q − x ỹQ − y 1
2

(x̃Q − x)2 (x̃Q − x) (ỹQ − y) 1
2

(ỹQ − y)2

(10)

which has Q rows and P columns. This matrix contains the polynomial factors from the Tay-
lor series expansion (1), evaluated at each data point. The weighting coefficients are likewise

gathered into a diagonal matrix. With r(x,y, x, y) ≡
√

(x̃− x)2 + (ỹ − y)2, form the diagonal
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matrix

WB (r(x,y, x, y)) =


KB(r1) 0 · · · 0

0 KB(r2) · · · 0
...

...
. . .

...
0 0 · · · KB(rQ)

 (11)

which is of dimension Q×Q.

The least squares estimate β̂
{ρ}
B of the vector β{ρ} at grid point (x, y) is found by minimizing∣∣∣WB (x̃, ỹ, x, y)

[
z̃−X{ρ} (x̃, ỹ, x, y) β̂

{ρ}
B (x, y)

]∣∣∣2 (12)

and is obtained by varying the terms in the estimated vector β̂
{ρ}
B (x, y). The estimated surface

ẑ(x, y) is just the first element of this vector. Note that for the ρ = 1 case, writing out the
matrix multiplications, we find that (12) is equivalent to (4). Thus (12) is just a compact way
to rewrite the least squares error in the vicinity of each grid point (x, y) for constant, linear, or
quadratic fits.

Using standard least squares theory, we can immediately write the solution as

β
{ρ}
B (x, y) =

[
X{ρ}T (x̃, ỹ, x, y) WB (x̃, ỹ, x, y) X{ρ} (x̃, ỹ, x, y)

]−1×
X{ρ}T (x̃, ỹ, x, y) WB (x̃, ỹ, x, y) z̃ (13)

where the superscript“−1” is the matrix inverse. This expression is perhaps more clear if we
omit the arguments on the right-hand side, obtaining

β
{ρ}
B (x, y) =

[
X{ρ}TWBX{ρ}

]−1
X{ρ}TWB z̃. (14)

This equation may be implemented with a loop over grid points together with a numerical
package for evaluating the matrix inverse. Note that the matrix which is inverted is relatively
small, P × P .

4 Modifications for the sphere

It is straightforward to adapt the method for scattered data on the sphere. Now the surface
z(φ, θ) is a function of both latitude φ and longitude θ, and is sampled at Q data points z̃q at

latitudes φ̃q and longitudes θ̃q, with q = 1, 2, . . . , Q. As before, we arrange the data and the

sample coordinates into vectors of length Q such as z̃ = [z̃1 z̃2 . . . z̃Q]T and similarly for φ̃

and θ̃. Based on this irregularly sampled data, we desire to obtain an estimate of z(φ, θ) on
a regular grid. For convenience, we assume for the time being that no data points are farther
than π/2 radians from the grid point location (φ, θ).

Latitude and longitude are not appropriate to use directly in the local polynomial fit. Be-
cause the latitude/longitude coordinate system varies in its resolution over the sphere, a linear
fit (for example) to these coordinates would vary in its ability to represent the local structure

of a surface z(φ, θ). Instead, it is convenient to transform the data locations
(
φ̃, θ̃

)
into a local

tangent plane coordinate system about the grid point of interest.
Consider a plane tangent to the sphere at latitude φ and longitude θ, with the x-coordinate

in this plane corresponding to east-west location, and the y-coordinate corresponding to north-
south location. The (x, y) origin of the tangent plane is at the tangent point (φ, θ) where the
plane touches the sphere. The (x, y) coordinates of the data in the tangent plane are then

x̃(φ̃, θ̃, φ, θ) = Re cos φ̃ sin
(
θ̃ − θ

)
(15)

ỹ(φ̃, θ̃, φ, θ) = Re cosφ sin φ̃−Re sinφ cos φ̃ cos
(
θ̃ − θ

)
(16)
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where Re is the radius of the earth. These coordinates are a function both of the data latitude φ̃

and longitude θ̃, as well as of the grid point location (φ, θ). The meaning of these equations can
be visualized as follows. From every point in the tangent plane, draw a perpendicular line to
the surface of the sphere. Then from location (x̃q, ỹq) in the tangent plane, a perpendicular line

extends to the sphere which touches the qth data point (φ̃q, θ̃q). The tangent plane equations
(15–16) are surely well known, but since we could not find a reference, a derivation is provided
in Appendix A.

Once the tangent plane equations have been computed, the exact great circle distances
between the data locations and the grid point (φ, θ) are then given via

d(φ̃, θ̃, φ, θ) = 2Re arcsin

 1√
2

√√√√1−

√
1− x̃2 + ỹ2

R2
e

 (17)

which is also derived in Appendix A. This is in fact equivalent to the well-known haversin
formula for great circle distance (e.g. Wikipedia, 2009). The haversin is defined as

haversin(θ) ≡ sin2(θ/2) (18)

and the haversin version of the great circle distance formula is

d(φ̃, θ̃, φ, θ) = Re haversin−1
[
haversin

(
φ̃− φ

)
+ cos θ cos θ̃ haversin

(
θ̃ − θ

)]
. (19)

A few line of algebra shows that this is the same as (17). Computationally it is more efficient to
compute the great circle distance from the tangent plane equations (which are needed anyway),
rather than returning to the latitudes and longitudes.

An important point is that (17) assumes that the data point and the grid point are not
further than π/2 radians apart. This is because data points that are further away correspond
to a second intersection of the perpendicular line from the tangent plane to the sphere, on the
far side of the sphere. While this is not a limitation since the weighting functions we will use
decay to zero at far smaller distances, it is necessary to supplement (17) in order to specifically
exclude such distant data points. See Appendix A for a simple algorithm for doing so.

The local polynomial fitting on the sphere can then be accomplished in a virtually identical

manner as for the plane. As before, we define a matrix X{ρ}(φ̃, θ̃, φ, θ) for ρ = 0, 1, or 2

X{0}(φ̃, θ̃, φ, θ) ≡


1
1
...
1


Q terms (20)

X{1}(φ̃, θ̃, φ, θ) ≡


1 x̃1 ỹ1

1 x̃2 ỹ2
...

...
...

1 x̃Q ỹQ

 (21)

X{2}(φ̃, θ̃, φ, θ) ≡


1 x̃1 ỹ1

1
2
x̃2

1 x̃1ỹ1
1
2
ỹ2

1

1 x̃2 ỹ2
1
2
x̃2

2 x̃2ỹ2
1
2
ỹ2

2
...

...
...

...
...

...
1 x̃Q ỹQ

1
2
x̃2
Q x̃QỹQ

1
2
ỹ2
Q

 (22)
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which gathers together the various terms needed for the polynomial fit. The weighting matrix
then becomes

WB(φ̃, θ̃, φ, θ) ≡


KB

(
d1(φ̃1, θ̃1, φ, θ)

)
0 · · · 0

0 KB

(
d2(φ̃1, θ̃1, φ, θ)

)
· · · 0

...
...

. . .
...

0 0 · · · KB

(
dQ(φ̃1, θ̃1, φ, θ)

)


(23)

which is again of dimension Q×Q. With these modifications, the solution is then simply (13)

β̂
{ρ}
B (φ, θ) =

[
X{ρ}T

(
φ̃, θ̃, φ, θ

)
WB

(
φ̃, θ̃, φ, θ

)
X{ρ}

(
φ̃, θ̃, φ, θ

)]−1

×

X{ρ}T
(
φ̃, θ̃, φ, θ

)
WB

(
φ̃, θ̃, φ, θ

)
z̃ (24)

where the terms in the vector β̂
{ρ}
B (φ, θ) are now interpreted as the derivatives in a local tan-

gent plane expansion about the point (φ, θ). The first term in the vector β̂
{ρ}
B (φ, θ) remains

the estimated surface ẑ (φ, θ).

5 Algorithm Status

We have implemented local polynomial fitting on the plane and on the sphere as a part of
a freely available Matlab toolbox for use by the community. It is numerically optimized by
direct (i.e., loopless) calculation of the matrix inverses. The spherical algorithm additional has
enhancements to minimize unnecessary distance computations between distant points, and to
avoid the exchange of information between ocean basins (e.g. across the isthmus separating the
Pacific Ocean from the Caribbean Sea). A second mode of operation, called “nearest-neighbor”
mode, is also implemented; this permits the bandwidth to be locally chosen to encompass the
nearest say N data points.

Local polynomial fitting has a number of useful extensions which will be considered in the
future. For first-order and higher-order fits, gradients of the surface are estimated in addition
to the surface itself. This could be useful for Aquarius as the sea surface salinity gradient is a
quantity of interest. Estimation of errors, both bias due to model mismatch and variance due
to random noise, are possible (Ruppert and Wand, 1994; Fan and Gijbels, 1996) and will be im-
plemented in the future. Other possibilities included automated methods for choosing fit radius
and/or polynomial order, alternative choices of weighting functions, and anisotropic weighting.

The main remaining task is to determine what bandwidth B and polynomial order ρ are
most appropriate for Aquarius. To a large extent, the bandwidth B is fixed on account of the
150 km decorrelation scale in the mission requirements. The most appropriate choices of these
two parameters depends upon the magnitude and nature of the random variability present in
the estimated salinity values. Determination of the optimal values can be accomplished with a
detailed investigation of output from the Aquarius simulator experiments.

6 Examples

We now present several preliminary showing a large reduction in mapping errors for the first
order fit compared with the zeroth order fit, and for the second order fit compared to the first-
order fit. A main advantage of the higher-order fits is the minimization of artifacts due to the
irregular spacing of the Aquarius sampling on account of the tri-beam configuration.

More to do here...
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A Spherical Details

The tangent plane equations (15–16) are not necessarily obvious, so a derivation is provided
here. Let x′, y′, and z′ be a Cartesian coordinate system with the origin at the center of the
sphere, and let x and y be the coordinates in a tangent plane which touches the sphere at (φo, θo).
The coordinate x is positive eastward at the tangent point, while y is positive northward; the
x′ axis is chosen to be parallel to the x axis. We aim to find the x and y coordinates of some
other point (φ, θ), whose angular distance to (φo, θo) is assumed to be less than π/2 radians.

The x′ and z′ coordinates of the point (φ, θ) can be written down at once as

x′ = Re cosφ sin (θ − θo) (25)

y′ = −Re cosφ cos (θ − θo) (26)

z′ = Re sinφ. (27)

Now let h(x, y) be the perpendicular distance from the tangent plane to the sphere, with
h(0, 0) = 0 by definition. In terms of x and y, x′ and z′ are then

x′ = x (28)

z′ = [Re − h(x, y)] sinφo + y cosφo (29)

and we see that x and x′ are identical. Thus we obtain

y = Re

[
sinφ

cosφo
− tanφo

]
+ h(x, y) tanφo (30)

as an equation for y. One other other hand, h(x, y) is found from the Pythagorean theorem

[Re − h(x, y)]2 +
(
x2 + y2

)
= R2

e (31)

where we consider a triangle whose hypotenuse extends from the center of the earth to the
point φ, θ. This leads to

h(x, y) = Re

[
1−

√
1− x2 + y2

R2
e

]
(32)

as an equation for h(x, y). Inserting this into the square of (30), and with a bit of algebra
involving trigonometric identifies, (16) follows. Note that the reference point is denoted by
(φ, θ) in the text, but by (φo, θo) in this appendix.

It is necessary to identify those pairs of points which are separated by more that π/2 radi-
ans. To avoid excessive computation, this should be done without computing the full spherical
distance. Instead simply note that the coordinates of the reference point, with respect to the
three-dimensional Cartesian coordinate system, are

x′o = 0 (33)

y′o = −Re cosφo (34)

z′o = Re sinφo (35)

with x′o vanishing by definition. Thus when y′oy
′+z′oz

′ > 0, the dot product between the vectors
representing these two points is positive, and therefore they are separated by no more than π/2
radians.
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Derivation of the distance formula (17) is straightforward. The great circle distance between
the point at (φo, θo) and the point at (φ, θ) is d = 2Re∆Φ, where ∆Φ is half the angular distance
between the two points. This is given by

∆Φ = arcsin

(
1

2

√
x2 + y2 + h2(x, y)

Re

)
= arcsin

 1√
2

√
1− h(x, y)

Re

 (36)

where we have noted that

x2 + y2 + h2(x, y) = x2 + y2 + 2R2
e − 2Reh(x, y)− x2 − y2 = 2R2

e − 2Reh(x, y) (37)

on account of (32). Equation (17) follows at once.
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